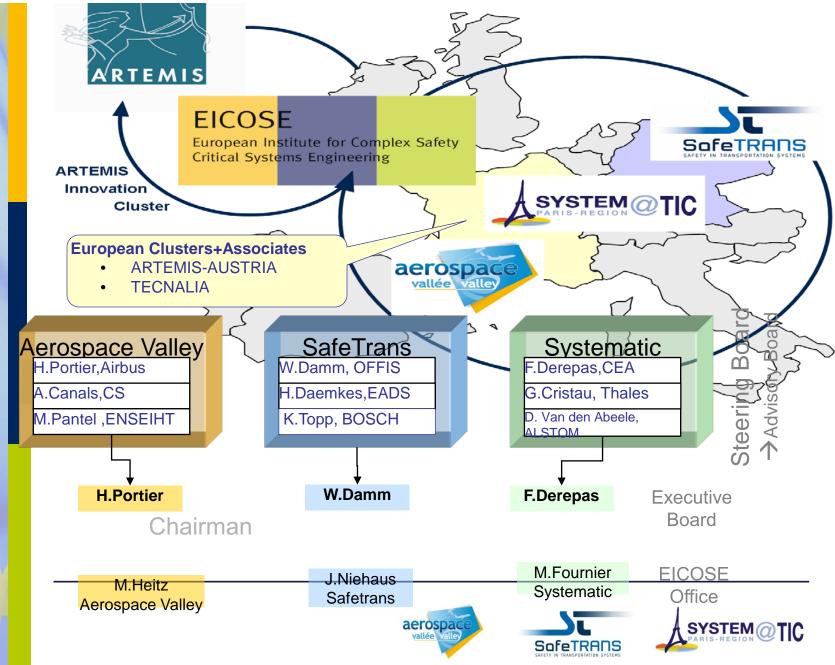


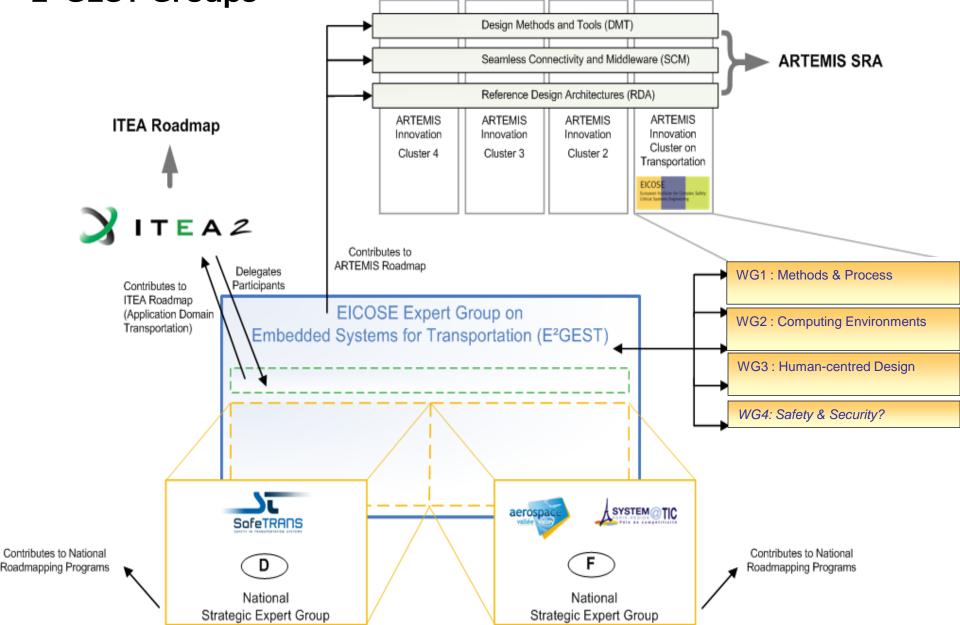
Inputs from ARTEMIS Centers of Innovation Excellence EICOSE


ARTEMISIA Summer Camp

June 6th, 2012 – Copenhagen

EICOSE – The ARTEMIS Innovation Cluster on Transportation




EICOSE Roadmapping Activities E²GEST Groups

Horizontal Working Groups

EICOSE Roadmap & Priorities Preparation Process

• Definition of EICOSE Topics

- Design, Tools Integration, V&V, HMI, OS & Middleware Services, Dependability
- WG1 Methods and Processes for Safety-enabling Embedded
 Systems
- WG2 Computing Environments for Embedded Systems
- WG3 Human Centered Design of Embedded Systems
- Formulation, Refinement, Evolution, Prioritization of EICOSE topics / items
 - e.g. 'Design for diagnosis' ,'Product Line design' under 'Design' topic
 - Prioritization of items
 - importance (medium, high),
 - urgency (short-/medium-term)
- Contribution to ARTEMIS roadmaps (SRA,RA,MASP)

Liaisons & information exchange

- ARTEMIS WG activities & Meetings
- and other non-ARTEMIS groups

Update of latest EICOSE priority list for 2013

- Topics kept the same importance ranking
- Urgency Criteria moving to short term
- Some Methods & Tools topics in WG2 moved to WG1
- Security topic common & transverse to WG1 & WG2

WG1 Prioritised Items (1)

DESIGN

- Systems of Systems (D16)
- Automated design exploration and synthesis (D11)
- Building Ontologies (D1.2)
- Design for diagnosis (D2)
- Evolvability (DT3)

TOOLS INTEGRATION

 Large scale cross domain tool interoperability & Standards (T1)

WG1 Prioritised items (2) - V&V

- Composability of V&V technologies (V1)
- Product line (V3) Variability /delta analysis
- Co-simulation for V&V of multi Physics systems (V3)
- **Cost effective qualification** of Verification & synthesis tools1 (V9)
- Verifiability & Testability technologies (V10)
- Verification of large models with large parameters set (V12)
- Verification of non functional properties (V13)

WG2 Prioritised items

- **Multiple criticality** (time predictability + safety)
- **Distributed systems** (with safe, robust, reliable communication links)
- **Security** (protection from outside hacking, privacy/data integrity)
- Virtualization system splitting the criticalities on the various cores (included redundancy tasks)
- Integration of services (mixed of all functions in a system, sharing resources)

WG3 Prioritised items

- Automated analysis of consequences of non-conforming behavior (incl. non-conforming operation of hardware elements)
- Modeling of different user types / modeling user variability (behavior/concern)
- Exploration of already available results and availability for system designers through specific evaluation tools or guidelines
- Investigation of human behavior in traffic situations in order to identify needs for additional assistance or for improving existing assistance
- Investigation of the holistic user experience with HMIs (emotions, satisfaction, user value)

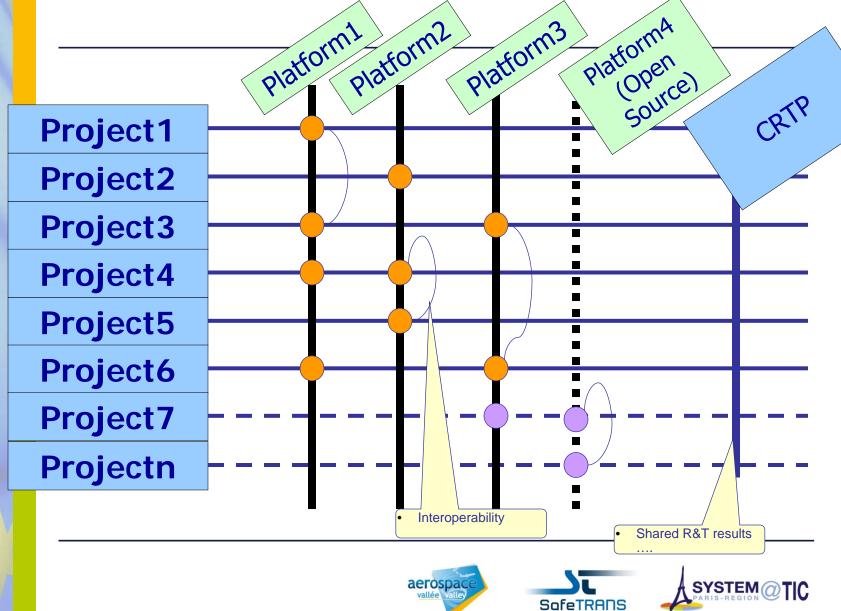
EICOSE Priorities - Results

ARTEMIS WG	EICOSE Topics	No.	EICOSE Items	Importance	Urgency
DMT	Design (Airbus)	D1 D2 D3 D4 D5 D6 D7	Requirements management (system of systems aspect) Design for diagnosis Component based design Systems interfaces management (supply chain) Architecture trade-offs (including robustness metrics, resource and behavior prediction) Product line design Large scale deployment of model based design	тттттт	S M M M S M S
	Tools integration (Continental)	T1 T2	Large scale cross domain tool interoperability Standards	H H	M S
	V&V (IRIT)	V3 V4 V5	Composability of v&v technologies Product line Co-simulation x in the loop Local verification techniques & tools (static, dynamic v&v) Simulation platform Model based v&v	ΤΞΤΤΤ	M M S M S
	Dependability (OFFIS)	DP2 DP3 DP4	Similarity analysis Controllability of hazardous situations Evaluation and verification of dependability Design for dependability Safety	ннн	S S M S
	HMI (Visteon)	H2 H3	Prototyping (including menus) V&V and simulation Modeling (including formal language) Demographic development	H H H H	S M S S
SCM	Middleware services guarantee prescribed QoS. (CEA)	M2 M3 M4 M5 M6	Multiple level of safety Support for deterministic behavior (RT) Fault isolation/containment Reconfiguration (static, dynamic, incl. multi process or multi core, redundancy management) Support for diagnosis New communication concepts wrt. reconfigurability, robustness, security Security (as a safety issue)		S S S M M M
RDA/SCM	Design support for emerging HW platforms (Numatec)	DS2 DS3 DS4 DS5	Methodology and tools for HW/SW co-design Extending design tools for support of multicore architectures Embedded multi-process architecture platforms for multi sensor applications (standard API/services between appl. HW & basic SW) Execution platform modeling Impact on and adaptation to standards (AUTOSAR,)	ны т тт	M M S M S
RDA	Design patterns (OFFIS)	DT2	Patterns Supporting COTS, fault isolation, DASL/ASIL level reduction, similarity arguments Patterns to support composibilty Evolvability	H M M	S M M

Inputs from ARTEMIS Centers of Innovation Excellence

EICOSE CRTP

ARTEMISIA Summer Camp

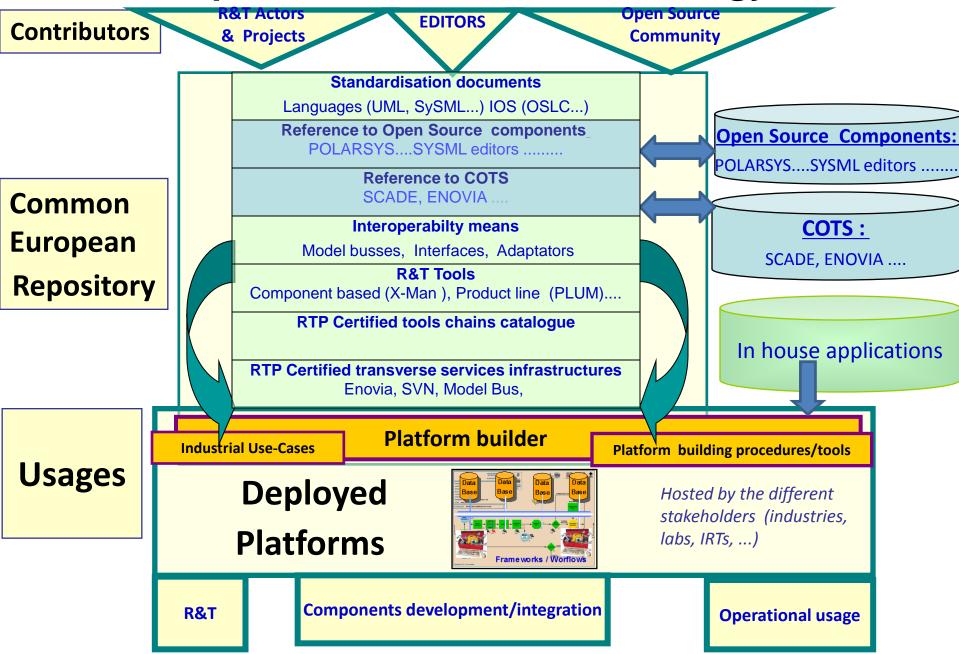

June 6th, 2012 – Copenhagen

ARTEMIS Tool Platforms

EICOSE CRTP

(Cooperation Reference Technology Platform)

- The CRTP is an ARTEMIS RTP in which a set of system engineering assets (Technology Bricks or Building Blocks) for critical embedded systems development are stored and managed under configuration.
- It is **hosted and operated on** a dedicated Information System (that might be distributed on different sites in Europe) and **offers services to Users** :
 - download, upload, manage under configuration, display the components/technological bricks.
 - Qualify these components (i.e. document & test components vs inter-operability , maturity & certification standards)
- Users will generate Tool Platforms from CRTP components. They can rely on a Platform builder to do it automatically.


•

Cooperation Reference Technology Platform

CRTP Activities & Services

- **Governance** defines and controls the rules for creating, and using the content of the CRTP..
- Operation: this is the provision and maintenance of IT infrastructure services + support to usage and qualification
- Qualification : Definition and application of procedures for qualification of bricks (TRL assessment, interoperability assessment)
- **Standardisation** : contribute to and rely on standardisation efforts e.g. interoperability standards, languages, etc...

Conclusion

- EICOSE contributes to ARTEMIS roadmapping with identified priority themes from the transportation sector
- EICOSE provides expert information within the formulation of
 - the ARTEMIS Multi Annual Strategic Plan (MASP),
 - the Annual Work Programme (AWP),
 - ASPs & AIPPs
- EICOSE fosters an innovation eco-system, supporting strategic networking and the mobilisation of resources on a large scale with collaboration of all stakeholders.

Organisations and companies cooperating in projects incubated by EICOSE:

For further information please contact:

AEROSPACE VALLEY Hervé Portier, Airbus France herve.portier@airbus.com

SYSTEMATIC Farbrice Derepas, CEA fabrice.derepas@cea.fr SafeTRANS

Prof. Dr. Werner Damm, OFFIS werner.damm@safetrans-de.org ARTEMIS Austria Dr. Josef Affenzeller josef.affenzeller@avl.com

Thank you !

Additional Slides

Overview EICOSE Topics

- Design
- Tools integration
- V&V
- Dependability
- HMI
- Middleware services guarantee prescribed QoS.
- Design support for emerging HW platforms
- Design Patterns

SP 1 'Methods and Processes for Safety-enabling Embedded Systems'

- SP1 will contribute to enhance the quality of final transportation services and products and to decreasing fatalities and injuries in transportation systems by
 - building cost efficient processes and methods supporting safety enabling embedded systems
- SP1 will require technological breakthroughs in four research areas:
 - Requirement Management
 - Architecture Modeling and Exploration
 - Analysis Methods
 - Component Based Design

and according to several transverse processes (task forces), e.g.

- Design for Safety
- Design for Diagnosability
- Design for Reuse
- → Focal Points: W. Damm, H. Portier

SP 5 'Computing Environments for Embedded Systems'

- The main goal of SP5 is to contribute the transition from a vertically structured to a horizontally structured market for the embedded computing solutions
- In order to achieve this goal, SP5 will deliver the following key technologies :
 - Standardized interfaces (APIs) between hardware and low level software implementation and application software, sensors and actuators
 - Core technologies and associated Intellectual Properties in the following areas:
 - low level drivers
 - system software
 - multi-core architectures
 - sensor hardware
 - communication
 - Design tools and associated runtimes that will support composability, predictability, parallelization, aggregation and management of systems according to a servicedriven approach, performance and energy modeling and analysis, verification, scalability ... while preserving system-level predictability and appropriate levels of safety
 - Solutions for variability management, at all levels
- → Focal Point: F.Derepas

SP 8 'Human Centered Design of Embedded Systems'

- Projects within SP8 shall focus on one or both of the following main goals:
 - Develop cross-domain reusable technology to construct "intelligent" multi modal HMI (synthesis of HMI)
 - Develop cross-domain technologies to analyse the effectiveness and economy of interaction with "intelligent" multi modal HMI designs (analysis of HMI) by predicting human behaviour.
- Projects should consider the following aspects:
 - Empirical studies have to be performed to
 - identify the needs of end-users (e.g. pilots, drivers, train operators, plant operators, patients, care givers) and
 - to study the characteristics of human interactions with (partially) autonomous systems fulfilling these needs
 - Industry needs have to be acquired from different domains and commonalities
 - Developed technologies should be integrated in a generic HMI Design Methodology that fulfils the industry needs and can be easily instantiated in different domains
 - Application & Evaluation should demonstrate that the methodology is practical to drive design and that analysis produces valid predictions.
- → Focal Point: G. Cristau, A. Lüdtke

